Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Med ; 16(1): 7, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184646

RESUMEN

BACKGROUND: 5' untranslated regions (5'UTRs) are essential modulators of protein translation. Predicting the impact of 5'UTR variants is challenging and rarely performed in routine diagnostics. Here, we present a combined approach of a comprehensive prioritization strategy and functional assays to evaluate 5'UTR variation in two large cohorts of patients with inherited retinal diseases (IRDs). METHODS: We performed an isoform-level re-analysis of retinal RNA-seq data to identify the protein-coding transcripts of 378 IRD genes with highest expression in retina. We evaluated the coverage of their 5'UTRs by different whole exome sequencing (WES) kits. The selected 5'UTRs were analyzed in whole genome sequencing (WGS) and WES data from IRD sub-cohorts from the 100,000 Genomes Project (n = 2397 WGS) and an in-house database (n = 1682 WES), respectively. Identified variants were annotated for 5'UTR-relevant features and classified into seven categories based on their predicted functional consequence. We developed a variant prioritization strategy by integrating population frequency, specific criteria for each category, and family and phenotypic data. A selection of candidate variants underwent functional validation using diverse approaches. RESULTS: Isoform-level re-quantification of retinal gene expression revealed 76 IRD genes with a non-canonical retina-enriched isoform, of which 20 display a fully distinct 5'UTR compared to that of their canonical isoform. Depending on the probe design, 3-20% of IRD genes have 5'UTRs fully captured by WES. After analyzing these regions in both cohorts, we prioritized 11 (likely) pathogenic variants in 10 genes (ARL3, MERTK, NDP, NMNAT1, NPHP4, PAX6, PRPF31, PRPF4, RDH12, RD3), of which 7 were novel. Functional analyses further supported the pathogenicity of three variants. Mis-splicing was demonstrated for the PRPF31:c.-9+1G>T variant. The MERTK:c.-125G>A variant, overlapping a transcriptional start site, was shown to significantly reduce both luciferase mRNA levels and activity. The RDH12:c.-123C>T variant was found in cis with the hypomorphic RDH12:c.701G>A (p.Arg234His) variant in 11 patients. This 5'UTR variant, predicted to introduce an upstream open reading frame, was shown to result in reduced RDH12 protein but unaltered mRNA levels. CONCLUSIONS: This study demonstrates the importance of 5'UTR variants implicated in IRDs and provides a systematic approach for 5'UTR annotation and validation that is applicable to other inherited diseases.


Asunto(s)
Nicotinamida-Nucleótido Adenililtransferasa , Enfermedades de la Retina , Humanos , Regiones no Traducidas 5' , Tirosina Quinasa c-Mer , Retina , Enfermedades de la Retina/genética , Isoformas de Proteínas , Oxidorreductasas de Alcohol
2.
Eur J Med Genet ; 67: 104907, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141875

RESUMEN

Genetic variants in ATP7A are associated with a spectrum of X-linked disorders. In descending order of severity, these are Menkes disease, occipital horn syndrome, and X-linked distal spinal muscular atrophy. After 30 years of diagnostic investigation, we identified a deep intronic ATP7A variant in four males from a family affected to variable degrees by a predominantly skeletal phenotype, featuring bowing of long bones, elbow joints with restricted mobility which dislocate frequently, coarse curly hair, chronic diarrhoea, and motor coordination difficulties. Analysis of whole genome sequencing data from the Genomics England 100,000 Genomes Project following clinical re-evaluation identified a deep intronic ATP7A variant, which was predicted by SpliceAI to have a modest splicing effect. Using a mini-gene splicing assay, we determined that the intronic variant results in aberrant splicing. Sanger sequencing of patient cDNA revealed ATP7A transcripts with exon 5 skipping, or inclusion of a novel intron 4 pseudoexon. In both instances, frameshift leading to premature termination are predicted. Quantification of ATP7A mRNA transcripts using a qPCR assay indicated that the majority of transcripts (86.1 %) have non-canonical splicing, with 68.0 % featuring exon 5 skipping, and 18.1 % featuring the novel pseudoexon. We suggest that the variability of the phenotypes within the affected males results from the stochastic effects of splicing. This deep intronic variant, resulting in aberrant ATP7A splicing, expands the understanding of intronic variation on the ATP7A-related disease spectrum.


Asunto(s)
Cutis Laxo , Síndrome de Ehlers-Danlos , Humanos , Masculino , ATPasas Transportadoras de Cobre/genética , Cutis Laxo/genética , Síndrome de Ehlers-Danlos/genética , Mutación , Fragmentos de Péptidos/genética , Fenotipo
3.
Eur J Hum Genet ; 31(10): 1190-1194, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37558808

RESUMEN

Biallelic hypomorphic variants in PRORP have been recently described as causing the autosomal recessive disorder combined oxidative phosphorylation deficiency type 54 (COXPD54). COXPD54 encompasses a phenotypic spectrum of sensorineural hearing loss and ovarian insufficiency (Perrault syndrome) to leukodystrophy. Here, we report three additional families with homozygous missense PRORP variants with pleiotropic phenotypes. Each missense variant altered a highly conserved residue within the metallonuclease domain. In vitro mitochondrial tRNA processing assays with recombinant TRMT10C, SDR5C1 and PRORP indicated two COXPD54-associated PRORP variants, c.1159A>G (p.Thr387Ala) and c.1241C>T (p.Ala414Val), decreased pre-tRNAIle cleavage, consistent with both variants impacting tRNA processing. No significant decrease in tRNA processing was observed with PRORP c.1093T>C (p.Tyr365His), which was identified in an individual with leukodystrophy. These data provide independent evidence that PRORP variants are associated with COXPD54 and that the assessment of 5' leader mitochondrial tRNA processing is a valuable assay for the functional analysis and clinical interpretation of novel PRORP variants.


Asunto(s)
Pérdida Auditiva Sensorineural , Enfermedades Mitocondriales , Ribonucleasa P , Femenino , Humanos , Genotipo , Pérdida Auditiva Sensorineural/genética , Homocigoto , Enfermedades Mitocondriales/genética , ARN de Transferencia , Ribonucleasa P/genética
4.
Reprod Biomed Online ; 45(4): 727-729, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35781182

RESUMEN

RESEARCH QUESTION: Does a genetic condition underlie the diagnosis of primary ovarian insufficiency (POI) in a 13-year-old girl with primary amenorrhoea? DESIGN: A case report of a next-generation sequencing panel of 24 genes associated with syndromal and non-syndromal POI was conducted. RESULTS: A homozygous missense variant c.1076C>T, p.(Pro359Leu) in BMP15 was identified. CONCLUSIONS: The biallelic variant c.1076C >T, p.(Pro359Leu) in BMP15 is associated with primary ovarian failure.


Asunto(s)
Proteína Morfogenética Ósea 15/genética , Insuficiencia Ovárica Primaria , Adolescente , Femenino , Homocigoto , Humanos , Mutación Missense , Insuficiencia Ovárica Primaria/genética
6.
Sci Adv ; 8(20): eabn2265, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35584218

RESUMEN

Basement membranes (BMs) are ubiquitous extracellular matrices whose composition remains elusive, limiting our understanding of BM regulation and function. By developing a bioinformatic and in vivo discovery pipeline, we define a network of 222 human proteins and their animal orthologs localized to BMs. Network analysis and screening in C. elegans and zebrafish uncovered BM regulators, including ADAMTS, ROBO, and TGFß. More than 100 BM network genes associate with human phenotypes, and by screening 63,039 genomes from families with rare disorders, we found loss-of-function variants in LAMA5, MPZL2, and MATN2 and show that they regulate BM composition and function. This cross-disciplinary study establishes the immense complexity of BMs and their impact on in human health.


Asunto(s)
Caenorhabditis elegans , Pez Cebra , Animales , Membrana Basal/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Humanos , Pez Cebra/genética
7.
Genome Res ; 32(5): 956-967, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35332098

RESUMEN

RNA homodimerization is important for various physiological processes, including the assembly of membraneless organelles, RNA subcellular localization, and packaging of viral genomes. However, understanding RNA dimerization has been hampered by the lack of systematic in vivo detection methods. Here, we show that CLASH, PARIS, and other RNA proximity ligation methods detect RNA homodimers transcriptome-wide as "overlapping" chimeric reads that contain more than one copy of the same sequence. Analyzing published proximity ligation data sets, we show that RNA:RNA homodimers mediated by direct base-pairing are rare across the human transcriptome, but highly enriched in specific transcripts, including U8 snoRNA, U2 snRNA, and a subset of tRNAs. Mutations in the homodimerization domain of U8 snoRNA impede dimerization in vitro and disrupt zebrafish development in vivo, suggesting an evolutionarily conserved role of this domain. Analysis of virus-infected cells reveals homodimerization of SARS-CoV-2 and Zika genomes, mediated by specific palindromic sequences located within protein-coding regions of N gene in SARS-CoV-2 and NS2A gene in Zika. We speculate that regions of viral genomes involved in homodimerization may constitute effective targets for antiviral therapies.


Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Animales , Secuencia de Bases , ARN Nucleolar Pequeño/genética , ARN Viral/genética , SARS-CoV-2/genética , Pez Cebra/genética , Virus Zika/genética , Infección por el Virus Zika/genética
8.
Am J Hum Genet ; 109(2): 210-222, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35065709

RESUMEN

Variable levels of gene expression between tissues complicates the use of RNA sequencing of patient biosamples to delineate the impact of genomic variants. Here, we describe a gene- and tissue-specific metric to inform the feasibility of RNA sequencing. This overcomes limitations of using expression values alone as a metric to predict RNA-sequencing utility. We have derived a metric, minimum required sequencing depth (MRSD), that estimates the depth of sequencing required from RNA sequencing to achieve user-specified sequencing coverage of a gene, transcript, or group of genes. We applied MRSD across four human biosamples: whole blood, lymphoblastoid cell lines (LCLs), skeletal muscle, and cultured fibroblasts. MRSD has high precision (90.1%-98.2%) and overcomes transcript region-specific sequencing biases. Applying MRSD scoring to established disease gene panels shows that fibroblasts, of these four biosamples, are the optimum source of RNA for 63.1% of gene panels. Using this approach, up to 67.8% of the variants of uncertain significance in ClinVar that are predicted to impact splicing could be assayed by RNA sequencing in at least one of the biosamples. We demonstrate the utility and benefits of MRSD as a metric to inform functional assessment of splicing aberrations, in particular in the context of Mendelian genetic disorders to improve diagnostic yield.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , Empalme del ARN , ARN Mensajero/genética , Análisis de Secuencia de ARN/estadística & datos numéricos , Programas Informáticos , Linfocitos B/metabolismo , Linfocitos B/patología , Células Sanguíneas/metabolismo , Células Sanguíneas/patología , Línea Celular , Fibroblastos/metabolismo , Fibroblastos/patología , Enfermedades Genéticas Congénitas/clasificación , Enfermedades Genéticas Congénitas/metabolismo , Enfermedades Genéticas Congénitas/patología , Variación Genética , Humanos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , ARN Mensajero/metabolismo , Proyectos de Investigación , Secuenciación del Exoma/estadística & datos numéricos
9.
Clin Genet ; 101(2): 255-259, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34713892

RESUMEN

The developmental disorder Burn-McKeown Syndrome (BMKS) is characterised by choanal atresia and specific craniofacial features. BMKS is caused by biallelic variants in the pre-messenger RNA splicing factor TXNL4A. Most patients have a loss-of-function variant in trans with a 34-base pair (bp) deletion (type 1 Δ34) in the promoter region. Here, we identified two patients with BMKS. One individual has a TXNL4A c.93_94delCC, p.His32Argfs *21 variant combined with a type 1 Δ34 promoter deletion. The other has an intronic TXNL4A splice site variant (c.258-3C>G) and a type 1 Δ34 promoter deletion. We show the c.258-3C>G variant and a previously reported c.258-2A>G variant, cause skipping of the final exon of TXNL4A in a minigene splicing assay. Furthermore, we identify putative transcription factor binding sites within the 56 bp of the TXNL4A promoter affected by the type 1 and type 2 Δ34 and use dual luciferase assays to identify a 22 bp repeated motif essential for TXNL4A expression within this promoter region. We propose that additional variants affecting critical transcription factor binding nucleotides within the 22 bp repeated motif could be relevant to BMKS aetiology. Finally, our data emphasises the need to analyse the non-coding sequence in individuals where a single likely pathogenic coding variant is identified in an autosomal recessive disorder consistent with the clinical presentation.


Asunto(s)
Atresia de las Coanas/diagnóstico , Atresia de las Coanas/genética , Sordera/congénito , Genotipo , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Mutación , Ribonucleoproteína Nuclear Pequeña U5/genética , Alelos , Sitios de Unión , Sordera/diagnóstico , Sordera/genética , Facies , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Linaje , Fenotipo , Regiones Promotoras Genéticas , Unión Proteica , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Factores de Transcripción/metabolismo
10.
Hum Genet ; 141(3-4): 805-819, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34338890

RESUMEN

Hearing loss and impaired fertility are common human disorders each with multiple genetic causes. Sometimes deafness and impaired fertility, which are the hallmarks of Perrault syndrome, co-occur in a person. Perrault syndrome is inherited as an autosomal recessive disorder characterized by bilateral mild to severe childhood sensorineural hearing loss with variable age of onset in both sexes and ovarian dysfunction in females who have a 46, XX karyotype. Since the initial clinical description of Perrault syndrome 70 years ago, the phenotype of some subjects may additionally involve developmental delay, intellectual deficit and other neurological disabilities, which can vary in severity in part dependent upon the genetic variants and the gene involved. Here, we review the molecular genetics and clinical phenotype of Perrault syndrome and focus on supporting evidence for the eight genes (CLPP, ERAL1, GGPS1, HARS2, HSD17B4, LARS2, RMND1, TWNK) associated with Perrault syndrome. Variants of these eight genes only account for approximately half of the individuals with clinical features of Perrault syndrome where the molecular genetic base remains under investigation. Additional environmental etiologies and novel Perrault disease-associated genes remain to be identified to account for unresolved cases. We also report a new genetic variant of CLPP, computational structural insight about CLPP and single cell RNAseq data for eight reported Perrault syndrome genes suggesting a common cellular pathophysiology for this disorder. Some unanswered questions are raised to kindle future research about Perrault syndrome.


Asunto(s)
Aminoacil-ARNt Sintetasas , Disgenesia Gonadal 46 XX , Pérdida Auditiva Sensorineural , Aminoacil-ARNt Sintetasas/genética , Proteínas de Ciclo Celular/genética , Niño , Femenino , Disgenesia Gonadal 46 XX/genética , Pérdida Auditiva Sensorineural/genética , Humanos , Masculino , Mutación , Linaje
11.
PNAS Nexus ; 1(5): pgac241, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36712349

RESUMEN

Noncoding RNAs (ncRNAs) regulate many aspects of gene expression. We investigated how ncRNAs affected protein secretion in yeast by large-scale screening for improved endogenous invertase secretion in ncRNA deletion strains with deletion of stable unannotated transcripts (SUTs), cryptic unstable transcripts (CUTs), tRNAs, or snRNAs. We identified three candidate ncRNAs, SUT418, SUT390, and SUT125, that improved endogenous invertase secretion when deleted. As SUTs can affect expression of nearby genes, we quantified adjacent gene transcription and found that the PIL1 gene was down-regulated in the SUT125 deletion strain. Pil1 is a core component of eisosomes, nonmobile invaginations found throughout the plasma membrane. PIL1 knockout alone, or in combination with eisosome components LSP1 or SUR7, resulted in further increased secretion of invertase. Secretion of heterologous GFP was also increased upon PIL1 deletion, but this increase was signal sequence dependent. To reveal the potential for increased biopharmaceutical production, secretion of monoclonal antibody Pexelizumab scFv peptide was increased by PIL1 deletion. Global analysis of secreted proteins revealed that approximately 20% of secreted proteins, especially serine-enriched secreted proteins, including invertase, were increased upon eisosome disruption. Eisosomes are enriched with APC transporters and sphingolipids, which are essential components for secretory vesicle formation and protein sorting. Sphingolipid and serine biosynthesis pathways were up-regulated upon PIL1 deletion. We propose that increased secretion of endogenous and heterologous proteins upon PIL1 deletion resulted from sphingolipid redistribution in the plasma membrane and up-regulated sphingolipid biosynthesis. Overall, a new pathway to improve protein secretion in yeast via eisosome disruption has been identified.

12.
Sci Rep ; 11(1): 20607, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34663891

RESUMEN

The development of computational methods to assess pathogenicity of pre-messenger RNA splicing variants is critical for diagnosis of human disease. We assessed the capability of eight algorithms, and a consensus approach, to prioritize 249 variants of uncertain significance (VUSs) that underwent splicing functional analyses. The capability of algorithms to differentiate VUSs away from the immediate splice site as being 'pathogenic' or 'benign' is likely to have substantial impact on diagnostic testing. We show that SpliceAI is the best single strategy in this regard, but that combined usage of tools using a weighted approach can increase accuracy further. We incorporated prioritization strategies alongside diagnostic testing for rare disorders. We show that 15% of 2783 referred individuals carry rare variants expected to impact splicing that were not initially identified as 'pathogenic' or 'likely pathogenic'; one in five of these cases could lead to new or refined diagnoses.


Asunto(s)
Biología Computacional/métodos , Enfermedad/genética , Empalme del ARN/genética , Algoritmos , Bases de Datos Genéticas , Diagnóstico , Diagnóstico Diferencial , Técnicas y Procedimientos Diagnósticos , Exones/genética , Variación Genética/genética , Genómica/métodos , Humanos , Mutación/genética , Precursores del ARN/genética , Sitios de Empalme de ARN/genética
13.
Am J Hum Genet ; 108(11): 2195-2204, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34715011

RESUMEN

Human mitochondrial RNase P (mt-RNase P) is responsible for 5' end processing of mitochondrial precursor tRNAs, a vital step in mitochondrial RNA maturation, and is comprised of three protein subunits: TRMT10C, SDR5C1 (HSD10), and PRORP. Pathogenic variants in TRMT10C and SDR5C1 are associated with distinct recessive or x-linked infantile onset disorders, resulting from defects in mitochondrial RNA processing. We report four unrelated families with multisystem disease associated with bi-allelic variants in PRORP, the metallonuclease subunit of mt-RNase P. Affected individuals presented with variable phenotypes comprising sensorineural hearing loss, primary ovarian insufficiency, developmental delay, and brain white matter changes. Fibroblasts from affected individuals in two families demonstrated decreased steady state levels of PRORP, an accumulation of unprocessed mitochondrial transcripts, and decreased steady state levels of mitochondrial-encoded proteins, which were rescued by introduction of the wild-type PRORP cDNA. In mt-tRNA processing assays performed with recombinant mt-RNase P proteins, the disease-associated variants resulted in diminished mitochondrial tRNA processing. Identification of disease-causing variants in PRORP indicates that pathogenic variants in all three subunits of mt-RNase P can cause mitochondrial dysfunction, each with distinct pleiotropic clinical presentations.


Asunto(s)
Alelos , Pleiotropía Genética , Mitocondrias/enzimología , ARN Mitocondrial/genética , ARN de Transferencia/genética , Ribonucleasa P/genética , Adulto , Femenino , Humanos , Masculino , Linaje
14.
Reprod Biomed Online ; 43(5): 899-902, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34497033

RESUMEN

RESEARCH QUESTION: Does a genetic condition underlie the diagnosis of primary ovarian insufficiency (POI) in a 21-year-old woman with primary amenorrhoea? DESIGN: A karyotype and genetic testing for Fragile X syndrome was undertaken. A next-generation sequencing panel of 24 genes associated with syndromal and non-syndromal POI was conducted. RESULTS: A nonsense variant c.1336G>T, p.(Glu446Ter) and whole gene deletion in STAG3 were identified. CONCLUSIONS: Biallelic loss of function variants in STAG3 are associated with primary ovarian failure type 8 and are a rare cause of POI.


Asunto(s)
Proteínas de Ciclo Celular/genética , Mutación , Insuficiencia Ovárica Primaria/genética , Amenorrea/genética , Codón sin Sentido/genética , Femenino , Eliminación de Gen , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Cariotipificación , Linaje , Pubertad/genética , Adulto Joven
15.
Biochem Soc Trans ; 49(3): 1221-1231, 2021 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-34060618

RESUMEN

Cilia are critical to numerous biological functions, both in development and everyday homeostatic processes. Diseases arising from genetic mutations that cause cilia dysfunction are termed ciliopathies. Several ubiquitously expressed splicing factors have been implicated in the condition Retinitis Pigmentosa (RP), a group of diseases characterised by the progressive degeneration of the retina. In many types of RP the disease affects the modified primary cilium of the photoreceptor cells and thus, these types of RP are considered ciliopathies. Here, we discuss sequence variants found within a number of these splicing factors, the resulting phenotypes, and the mechanisms underpinning disease pathology. Additionally, we discuss recent evidence investigating why RP patients with mutations in globally expressed splicing factors present with retina-specific phenotypes.


Asunto(s)
Cilios/genética , Ciliopatías/genética , Predisposición Genética a la Enfermedad/genética , Mutación , Factores de Empalme de ARN/genética , Retinitis Pigmentosa/genética , Animales , Cilios/metabolismo , Cilios/patología , Ciliopatías/metabolismo , Humanos , Precursores del ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , Factores de Empalme de ARN/metabolismo , Retina/metabolismo , Retina/patología , Retinitis Pigmentosa/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo
16.
Nat Genet ; 53(5): 630-637, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33958779

RESUMEN

The kidney is an organ of key relevance to blood pressure (BP) regulation, hypertension and antihypertensive treatment. However, genetically mediated renal mechanisms underlying susceptibility to hypertension remain poorly understood. We integrated genotype, gene expression, alternative splicing and DNA methylation profiles of up to 430 human kidneys to characterize the effects of BP index variants from genome-wide association studies (GWASs) on renal transcriptome and epigenome. We uncovered kidney targets for 479 (58.3%) BP-GWAS variants and paired 49 BP-GWAS kidney genes with 210 licensed drugs. Our colocalization and Mendelian randomization analyses identified 179 unique kidney genes with evidence of putatively causal effects on BP. Through Mendelian randomization, we also uncovered effects of BP on renal outcomes commonly affecting patients with hypertension. Collectively, our studies identified genetic variants, kidney genes, molecular mechanisms and biological pathways of key relevance to the genetic regulation of BP and inherited susceptibility to hypertension.


Asunto(s)
Predisposición Genética a la Enfermedad , Genómica , Hipertensión/genética , Riñón/patología , Empalme Alternativo/genética , Presión Sanguínea/genética , Metilación de ADN/genética , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Análisis de la Aleatorización Mendeliana , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética
17.
Front Genet ; 12: 636620, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33584830

RESUMEN

Pre-mRNA splicing is performed by the spliceosome, a dynamic macromolecular complex consisting of five small uridine-rich ribonucleoprotein complexes (the U1, U2, U4, U5, and U6 snRNPs) and numerous auxiliary splicing factors. A plethora of human disorders are caused by genetic variants affecting the function and/or expression of splicing factors, including the core snRNP proteins. Variants in the genes encoding proteins of the U5 snRNP cause two distinct and tissue-specific human disease phenotypes - variants in PRPF6, PRPF8, and SNRP200 are associated with retinitis pigmentosa (RP), while variants in EFTUD2 and TXNL4A cause the craniofacial disorders mandibulofacial dysostosis Guion-Almeida type (MFDGA) and Burn-McKeown syndrome (BMKS), respectively. Furthermore, recurrent somatic mutations or changes in the expression levels of a number of U5 snRNP proteins (PRPF6, PRPF8, EFTUD2, DDX23, and SNRNP40) have been associated with human cancers. How and why variants in ubiquitously expressed spliceosome proteins required for pre-mRNA splicing in all human cells result in tissue-restricted disease phenotypes is not clear. Additionally, why variants in different, yet interacting, proteins making up the same core spliceosome snRNP result in completely distinct disease outcomes - RP, craniofacial defects or cancer - is unclear. In this review, we define the roles of different U5 snRNP proteins in RP, craniofacial disorders and cancer, including how disease-associated genetic variants affect pre-mRNA splicing and the proposed disease mechanisms. We then propose potential hypotheses for how U5 snRNP variants cause tissue specificity resulting in the restricted and distinct human disorders.

18.
PLoS Genet ; 17(1): e1008761, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33493158

RESUMEN

Non-coding RNAs (ncRNAs), including the more recently identified Stable Unannotated Transcripts (SUTs) and Cryptic Unstable Transcripts (CUTs), are increasingly being shown to play pivotal roles in the transcriptional and post-transcriptional regulation of genes in eukaryotes. Here, we carried out a large-scale screening of ncRNAs in Saccharomyces cerevisiae, and provide evidence for SUT and CUT function. Phenotypic data on 372 ncRNA deletion strains in 23 different growth conditions were collected, identifying ncRNAs responsible for significant cellular fitness changes. Transcriptome profiles were assembled for 18 haploid ncRNA deletion mutants and 2 essential ncRNA heterozygous deletants. Guided by the resulting RNA-seq data we analysed the genome-wide dysregulation of protein coding genes and non-coding transcripts. Novel functional ncRNAs, SUT125, SUT126, SUT035 and SUT532 that act in trans by modulating transcription factors were identified. Furthermore, we described the impact of SUTs and CUTs in modulating coding gene expression in response to different environmental conditions, regulating important biological process such as respiration (SUT125, SUT126, SUT035, SUT432), steroid biosynthesis (CUT494, SUT053, SUT468) or rRNA processing (SUT075 and snR30). Overall, these data capture and integrate the regulatory and phenotypic network of ncRNAs and protein-coding genes, providing genome-wide evidence of the impact of ncRNAs on cellular homeostasis.


Asunto(s)
Redes Reguladoras de Genes/genética , ARN no Traducido/genética , Transcripción Genética , Transcriptoma/genética , Regulación Fúngica de la Expresión Génica/genética , Genoma Fúngico , Haploidia , Fenotipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
19.
PLoS One ; 15(7): e0233582, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32735620

RESUMEN

The craniofacial developmental disorder Burn-McKeown Syndrome (BMKS) is caused by biallelic variants in the pre-messenger RNA splicing factor gene TXNL4A/DIB1. The majority of affected individuals with BMKS have a 34 base pair deletion in the promoter region of one allele of TXNL4A combined with a loss-of-function variant on the other allele, resulting in reduced TXNL4A expression. However, it is unclear how reduced expression of this ubiquitously expressed spliceosome protein results in craniofacial defects during development. Here we reprogrammed peripheral mononuclear blood cells from a BMKS patient and her unaffected mother into induced pluripotent stem cells (iPSCs) and differentiated the iPSCs into induced neural crest cells (iNCCs), the key cell type required for correct craniofacial development. BMKS patient-derived iPSCs proliferated more slowly than both mother- and unrelated control-derived iPSCs, and RNA-Seq analysis revealed significant differences in gene expression and alternative splicing. Patient iPSCs displayed defective differentiation into iNCCs compared to maternal and unrelated control iPSCs, in particular a delay in undergoing an epithelial-to-mesenchymal transition (EMT). RNA-Seq analysis of differentiated iNCCs revealed widespread gene expression changes and mis-splicing in genes relevant to craniofacial and embryonic development that highlight a dampened response to WNT signalling, the key pathway activated during iNCC differentiation. Furthermore, we identified the mis-splicing of TCF7L2 exon 4, a key gene in the WNT pathway, as a potential cause of the downregulated WNT response in patient cells. Additionally, mis-spliced genes shared common sequence properties such as length, branch point to 3' splice site (BPS-3'SS) distance and splice site strengths, suggesting that splicing of particular subsets of genes is particularly sensitive to changes in TXNL4A expression. Together, these data provide the first insight into how reduced TXNL4A expression in BMKS patients might compromise splicing and NCC function, resulting in defective craniofacial development in the embryo.


Asunto(s)
Empalme Alternativo , Atresia de las Coanas/patología , Sordera/congénito , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/patología , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Ribonucleoproteína Nuclear Pequeña U5/deficiencia , Empalmosomas/fisiología , Apoptosis , Diferenciación Celular , Técnicas de Reprogramación Celular , Atresia de las Coanas/genética , Células Clonales , Sordera/genética , Sordera/patología , Transición Epitelial-Mesenquimal , Exones/genética , Cara/embriología , Facies , Femenino , Cabeza/embriología , Cardiopatías Congénitas/genética , Humanos , Cresta Neural/citología , Regiones Promotoras Genéticas/genética , Sitios de Empalme de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/genética , Eliminación de Secuencia , Proteína 2 Similar al Factor de Transcripción 7/genética , Vía de Señalización Wnt
20.
Am J Hum Genet ; 106(5): 694-706, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32359472

RESUMEN

How mutations in the non-coding U8 snoRNA cause the neurological disorder leukoencephalopathy with calcifications and cysts (LCC) is poorly understood. Here, we report the generation of a mutant U8 animal model for interrogating LCC-associated pathology. Mutant U8 zebrafish exhibit defective central nervous system development, a disturbance of ribosomal RNA (rRNA) biogenesis and tp53 activation, which monitors ribosome biogenesis. Further, we demonstrate that fibroblasts from individuals with LCC are defective in rRNA processing. Human precursor-U8 (pre-U8) containing a 3' extension rescued mutant U8 zebrafish, and this result indicates conserved biological function. Analysis of LCC-associated U8 mutations in zebrafish revealed that one null and one functional allele contribute to LCC. We show that mutations in three nucleotides at the 5' end of pre-U8 alter the processing of the 3' extension, and we identify a previously unknown base-pairing interaction between the 5' end and the 3' extension of human pre-U8. Indeed, LCC-associated mutations in any one of seven nucleotides in the 5' end and 3' extension alter the processing of pre-U8, and these mutations are present on a single allele in almost all individuals with LCC identified to date. Given genetic data indicating that bi-allelic null U8 alleles are likely incompatible with human development, and that LCC is not caused by haploinsufficiency, the identification of hypomorphic misprocessing mutations that mediate viable embryogenesis furthers our understanding of LCC molecular pathology and cerebral vascular homeostasis.


Asunto(s)
Alelos , Calcinosis/genética , Quistes del Sistema Nervioso Central/genética , Quistes/genética , Leucoencefalopatías/genética , Mutación , ARN Nucleolar Pequeño/genética , Pez Cebra/genética , Animales , Secuencia de Bases , Calcinosis/patología , Quistes del Sistema Nervioso Central/patología , Secuencia Conservada , Modelos Animales de Enfermedad , Desarrollo Embrionario/genética , Humanos , Leucoencefalopatías/patología , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...